
Lampyrid 2023: Volume 13, 61–72

ISSN: 2041-4900

https://lampyridjournal.com

61

Code Clone Detection: An Empirical Study of Techniques for

Software Engineering Practice

Harshita Kaushik1, Dr K D Gupta2

1. PhD Scholar, Department of Computer Science Apex University, Jaipur,

harshitasharma061194@gmail.com

2. Associate Professor, Department of Computer Science Apex University, Jaipur,

Kdevgupta@gmail.com

Abstract— Software cloning has been a prevalent practice in software development for several decades,

wherein code fragments are duplicated and reused throughout the codebase. While cloning can help boost

productivity and code maintainability, it also has the potential to introduce new problems like bugs,

inconsistencies, and code smells. The detection of code clones, which entails the identification of code

segments that are structurally similar or identical, is one of the key issues in dealing with software cloning.

Various types of code clones include Type 1 clones (identical code fragments), Type 2 clones (structurally similar

code fragments), Type 3 clones (code fragments with semantic similarity), and Type 4 clones. Textual analysis,

token-based analysis, and tree-based analysis are only a few of the methods explored to identify code clones.

Another method that has shown promise in clone identification is probabilistic software modeling, in which

code is modeled as a probabilistic network and clones are found by analysis of the graph structure. Herein, we

survey the state-of-the-art in software cloning and code clone detection methods. The paper also covered the

numerous kinds of code clones along with their benefits and drawbacks. We next explore and evaluate many

methods for identifying code clones, including probabilistic software modeling. Finally, we investigate the ways

in which probabilistic software modeling may be used for various software engineering purposes, such as

predictive and generative.

Keywords—Software Clone, Source Code, Code Clone, Code Clone Detection, Probabilistic Software Modeling.

__

1. INTRODUCTION

Cloning is a prevalent practise in the software and scientific communities. The accessible

resources that encourage code cloning are often utilised to reuse the existing code. It creates a

difficult challenge for software maintenance. It takes a significant amount of time and work, which

raises the cost of building any tool, programme, etc. Syntactic and semantic clones are two basic

forms of clonesType-1, Type-2, and Type-3 syntactic clones exist, although Type-4 semantic clones

exist. [1]. Type-1 clones are two or more pieces of code that are otherwise identical save for a few

formatting details. Type-2 clones are defined as code segments which are identical to one another

but have minor name changes, such as variables, renaming identifiers, etc. As a result, Type-2 clones

are often referred to as renamed clones. Type-3 clones are close clones that include some extra

additions and deletions of instructions but are nonetheless comparable code fragments. Semantic

clones, also known as Type-4 clones, are copies that do the same objective but may have a distinct

syntactic structure. Table 1 provides an example of a semantic clone which describes the swap of

two integers based on distinct logics..

abstract syntax tree-based, token-based Text-based, programme dependency graph-based, etc.

methods have all been utilised in past to find code clones. [2]. Source code clone detection has

recently benefited from deep learning &machine learning[3] [4] based approaches. The use of deep

learning in identifying copying codes has been on rise recently. (e.g., [5][6][7][8][9][10]). Embedding

methods like graph2vec, node2vec, & word2vec, are used to discover structural similarities between

pieces of source code represented in abstractions like tokens, abstract syntax trees, and control flow

graphs. Existing research mostly focuses on identifying duplicates of code written in same language.

Lampyrid 2023: Volume 13, 61–72

ISSN: 2041-4900

https://lampyridjournal.com

62

[11]. However, these days software is typically developed on a multilanguage platform, wherein a

variety of languages are employed to accomplish the same tasks. APIs for large data processing, like

Apache Spark, are widely used due to their similarity in name and call patterns across languages.

[12][13]. When changes are made to one clone in such an environment, updates must be performed

consistently across all clones, which often includes clones in several languages. Some study has been

conducted on the identification of cross-language code clones. Nevertheless, their methods

underperform because they rely on poor quality features for learning and predicting. In this study,

we provide a concise and effective overview & literature analysis to assist future researchers in

becoming acquainted with methodologies utilised to identify semantic code clones.[14] The

fundamental goal of this research is to give a thorough systematic & comparative examination of

semantic clone detection algorithms, together with their benefits and drawbacks.

Table 1. An Example of a Semantic Clone

main () main ()

{int I, J; {int P, Q;

int temp; P=P+Q;

temp=I; Q=P-Q;

I=J; P=P-Q;

J=temp; }

}

2. SOFTWARE CLONING

Clones of software are described in terms of syntax or semantics as comparable (near-miss) or

the same (precise) code fragments. In general, these code fragments are produced by the copy-

pasting of code by programmers that generate similar clones. Yet, if the parts of copied code include

little amendments, they lead to clones nearly miss. The code may no longer be regarded as a clone,

as the consequence of significant alterations to the copied code. Likewise, once programmers do a

common task or even after they utilize libraries or APIs, certain clones are accidentally placed into

software systems. If two data pieces have the same functionality and also have alternative syntax

implementations, semantic clones are termed. Mostly during the development phase, software code

cloning delivers benefits. Application inventors reuse their private code fo2 save time reworking, or

utilize the code of others to circumvent some constraints on programming & design. Further attention

is given to skilled developers to pick higher quality, tested & bug-free cloning code. In contrast, the

copied code might contain a significant issue, i.e. bugs which require additional maintenance tests

or updating [15]. Jamshoro has the highest average pace contrasted to other zones. [16].

In the process of developing software, programmers often prefer to clip and paste a section of

source code from another source segment exactly, even if this requires making some minor

adjustments in order for two sections to seem equal or similar. This is referred to as "software/code

cloning," and some researchers also do it. Programmers may complete their task more quickly by

using code clones. There are several reasons for copying the code. Due to this sort of conduct,

programming or maintenance problems emerge. If, for example, a defect is perceived in a cloned

software system code fragment, the programmer must find and repair this bug everywhere, therefore

increasing software maintenance problems.

In addition, code clones may contribute to vulnerabilities spread in terms of software system

security when a susceptible portion of code is cloned. Although software developers are attempting

to design safe source code & reduce source vulnerabilities throughout their system development,

software programming will unavoidably cause code clone behavior and spread system faults. If two

code pieces are very identical in software engineering with little changes or, because of copy-paste

behavior, are even identical [17].

Lampyrid 2023: Volume 13, 61–72

ISSN: 2041-4900

https://lampyridjournal.com

63

3. CODE CLONES

Code clones are code fragments that are in pairs, inside or between software systems. When

reusing code via cut/paste, software developments produce clones, but clones can be created for a

variety of reasons. The influence of clones on software design may be detrimental. Their size

increases unnecessarily, software maintenance & re-engineering expenses rise. The problem is

reproduced all across the system, making debugging & bug repair difficult when bugging code has

been cloned. Clones might introduce additional issues if they are not updated on development

of original code snippet. Cloning can also have advantages including acceleration & decoupling

software [1]. Nevertheless, to limit its negative impacts, designers must maintain track of their

clones. It has been proven that clone statistical models have apps in code search, new API

exploitation, bug identification, detection of security vulnerability, malware detection, etc. Figure

1 shows an example of code clone.

Figure 1. An Example of a Code Clone

The two pieces of code which make up a clone pair, or clone classes, are said to have a clone

relation if and only if they are equivalent. [56]. To be an equivalence relation, it must be capable of

holding all other relations (reflexive, symmetric, & transitive). When two pieces of code share the

same sequences—whether they be original strings, sequences of token type, strings with

whitespace, or sequences of converted tokens—they are said to have a clone relation. A pair of code

parts or code segments that match is what is meant by a clone pair for a particular clone relation,

and the term "clone class" refers to the equivalence class of a clone relation. In other words, if the

relation holds between any two code segments, then all code segments in a clone class create a clone

pair. Clone pairs and clone classes are shown in Figure 2.

Figure 2: A description of clone class & clone pair

Lampyrid 2023: Volume 13, 61–72

ISSN: 2041-4900

https://lampyridjournal.com

64

A. Code Clone Types

Experts suggest four major categories of clones that are mutually excluding and characterized

regarding their detecting capability [1] [18]. Clones are divided into four types depending on their

similarities: textual (types I, II, and III) & functional (type IV). In particular, these:

a) Type-1

Type-1 clones are equivalent fragments of code if trivia such as foreign white space, code styling

& comments are ignored. Type 1 clones are normally produced when the layout & comments are

copied and pasted without changes or alteration. Identical code segments, which ignores white space

variances, code formatting/style & comments.

Figure 3: Type -1 (or precise) clones

b) Type-2

Type-2 clones are generated often by copying and pasting with a tiny change like the rename of

a variable, argument, or a literal. Many detectors can easily detect Type 2 clones. Comparable code

fragments structurally/syntactically, ignoring changes in identification names, literal data &

variations in blank space, code formatting / style & comments. Figure 4 is an illustration of a Type II

clone.

Figure 4: Type-2 (or rechristened clones)

c) Type-3

Type 3 clones have changes in the declaration, and code fragments which include statements

have been added/removed or changed. Code fragments are syntactically identical with statements

differing. The code fragments are accompanied by statements that are added, deleted, or modified.

When further changes are performed to a line-level clone code fragment, like deletion, addition, or

alteration of one or more lines, a Type 3 copy is generated. Type III clones, like clone 5, are very

similar to the original but not quite[19].

Lampyrid 2023: Volume 13, 61–72

ISSN: 2041-4900

https://lampyridjournal.com

65

Figure 5: Clones of Type-3 (or near miss)

d) Type-4

Type-4 clones may emerge when several distinct syntactic versions have the same functionality

performed. The code segments are syntactically different, implementing the same or comparable

functions. Semantic similarities between two or more pieces of code (also called "functional clones"

or "dependency clones") are often found to be 4. Type IV clones are seen in Figure 6.

Figure 6. Type-4 (or) semantic clones

There are many degrees of complexity needed to detect different kinds of clones. Although

lexical-based analysis may be employed to spot examples of Types I and II, it becomes more difficult

to find Types III and IV because matching functionally identical code fragments requires more

sophistication.

B. Advantages of Code Clone

In software systems, clones are often added after restructuring so that various maintenance

advantages may be obtained. Some of the benefits provided by clones are discussed below.

• Danger in Writing New Code: When a developer desires to eliminate hazards associated with

developing new code, he or she will utilise existing code. Writing new code introduces the

possibility of errors and defects, whereas the extant code has been thoroughly examined.

According to Cordy, clones occur frequently in a financial software system, despite the fact which

financial products rarely alter, notably within same financial institution. Mostly because the

current system requires constant maintenance and improvements to accommodate new features

that are functionally equivalent to those already present. In cases like these, it is common

practise to ask the developer to modify an existing code block to meet the needs of novel

product. This is mostly due to the much higher risk of introducing software defects detected in

new code fragments as compared to using preexisting code that has already through

comprehensive testing. Software errors. in an organisation may be highly expensive.

• Software architecture that is clear and understandable: In order to promote clear and

understood software design, it is intended to incorporate clones into the system.

• Maintenance Speedup: In a multi-cloned system, two cloned code fragments are distinct from

Lampyrid 2023: Volume 13, 61–72

ISSN: 2041-4900

https://lampyridjournal.com

66

one another in terms of both syntaxse & semantics and may develop independently at various

rates without impacting one another. Testing can also be done and is necessary for updated

fragments. Main training cloned parts in a system could facilitate maintenance, particularly in

the absence of automatic regression checks.

• Ensuring Robustness of Life-critical Systems: Life-critical systems are often built with

redundancies or clones in mind. In order to minimise the possibility of mistakes, numerous teams

work on same functionality in life-critical systems to ensure that all safety measures are

maintained and the system functions without problems. This not only enhances recommendation

outcomes, but also decreases the difficulties caused by data scarcity by a significant amount

[20].

• The High Expense of Calling Functions in Real-Time Applications: It may seem that function

calls are too expensive to use in real-time applications. Although inlined functions are slightly

faster than regular functions due to the elimination of function-calling overheads, they also

consume more memory. There will be ten copies of function added to code if it is inlined ten

times. Without inline functions, the computer autonomously decides which functions to inline,

and if it doesn't, coder must write code that would have gone in function at the place where the

function is called, which creates duplicates.

• Disadvantages of Code Clone:The use of code cloning may make the development of software

systems simple, but it may also be essential for ongoing maintenance and improvement

of software system's quality. Code cloning may simplify the construction of software systems, but

it may also be necessary for continuous maintenance and quality enhancement of such systems.

• Increased Probability of Defects: If the original code has a flaw, then the clone will have same

problem. As a result, duplicating code can make it more likely for a system flaw to happen.

• Increased Resource Requirements: An rise in code clones may increase the size of system, the

time it takes to compile code, and amount of memory system needs, all of which might lead to

need for costly hardware and software updates.

• Increase Maintenance Effort and Cost: Code cloning during software maintenance significantly

increases the amount of work that must be done. If an error or flaw is discovered during the

maintenance stage, all of clones of that fragment should be checked to see if they share the

same error or bug before problem can be fixed, which increases maintenance effort.

• Increased Chances of Bad Design: The number of code clones may rise, resulting in a larger

system with more memory needs, longer compilation times, and larger system sizes. This might

play a role in pricey hardware and software updates.

4. CODE CLONE DETECTION

Code clone detection has been an integral part of a number of software engineering processes.

In context of aspect mining, comprehension of initiatives, plagiarism detection, copyright, code

composition, analytics, software developments, quality analysis, bog detection as well as viral

detection, to address just a few, text like syntactic, similar, or semantics code fragments should

usually be recognized. There has been a lot of attention in detecting code clones recently. A clone

is an object that occurs more than once in a development software output. Nowadays most clone

detection focuses on code clones, although cloning may take place in any device. In code, this is

often the consequence of regular programming practice: developers know that something similar has

been accomplished elsewhere. Simply copy & change this section of the code to meet your new

needs. So far, it's not an issue, because we anticipate the author to refactor to eliminate the new

duplication. This often, even so, doesn’t happen either due to constraint of time or because the

developer does not even know that this may be an issue [21].

A. Code Clone Detection Techniques

 In general, methods for detecting different types of clones in software systems may be grouped

into many areas, that are discussed below. [22]:

Lampyrid 2023: Volume 13, 61–72

ISSN: 2041-4900

https://lampyridjournal.com

67

a) Textual Approaches

Text-based languages The most popular and simple approach of finding clones is via use of clone

detection tools. Such methods look for linguistic patterns in source code that may indicate cloning

by analysing code's lexical structure. Particularly, string-based detection techniques are often

applied to distinguish either identical sections of code (Type I) or clones with slight modifications,

including renamed variables (Type II), and they may be utilised across a broad range of programming

languages. This method involves a line-by-line comparison of strings without any rewriting of code.

Recently, though, various text-based approaches have been developed that modify code by

eliminating whitespace and comments. Since these approaches do not necessitate a semantical or

syntactical analysis of the source code, their efficacy is superior to that of other techniques. Dup is

an example of a clone detection instrument which employs textual analysis.

Token Based Technique

Token-based clone detection methods work by first translating code into a set of tokens, and

then comparing those tokens to others in a sequence which have similarities with them. It is common

practise to use a lexical analyzer for the process of converting code into tokens. This method runs

less quickly than a text-based method since every code must be tokenized, which takes a lot of time.

CCFinder is an example of a clone detection instrument which employs token analysis.

b) Code Metrics Analysis

These tools compare different sections of code using metrics derived from source code to see

whether any of sections are identical or nearly identical. Particularly, a few metrics are employed as

code fragment classification and representation signatures. The fundamental idea is that clones of

two or more code fragments would have a variety of features, all of which can be accurately

measured by metrics being employed. Because of this, signatures that are quite similar raise the

possibility of cloning. Code metrics approaches are quicker, simpler, and easier to utilise than other

clone detection techniques. They also take less time to identify code. Covet is an instrument that

adheres to metrics-based clone detection method.

c) Parsing Techniques

Source code abstract syntax trees (ASTs) are compared and matched using such methods.

Particularly, subtree similarities in the AST of the system are indicative of cloning. Type II clones may

also be detected using these methods since names and literal values of variables are not taken into

account while building AST. It takes a long time for this method to be applied on a huge source code.

CloneDR is a programme that employs an AST-based strategy to find clones.

d) Graph Analysis

By comparing parallel subgraphs in a PDG (programme dependency graph), this method locates

code snippets in a programme that are functionally equivalent to one another. A PDG is a visual

representation of logic and data flow of a programme. This method improves the AST parsing method

by taking into account both syntactic structure and the data flow of programmes. This specific

method can detect interwoven clones as well as clones with matching code statements which have

been rearranged. Duplix is an instrument for clone detection based on PDG.

e) Hybrid Technique

The applications of this method are flexible. Here, developers typically combine multiple

methods to identify potential clone codes. The processes may be so complex that they are carried

out in phases, with a complete technique constituting the initial stage and another method

constituting the second. Kosche et al. proposed a method that ultimately proved effective. The

members of the team contrasting the tokens of different AST (Abstract Syntax Tree) nodes without

doing a direct comparison for each and every AST node. Tairas et al. built a methodology to find

Lampyrid 2023: Volume 13, 61–72

ISSN: 2041-4900

https://lampyridjournal.com

68

already-existing, functioning cones in software by combining suffix tree and AST-based approaches

into one system.

Table 2. Clone detection methods' capabilities and characteristics

Technique Clone

Type

Portability Efficiency Integrality

AST Based Type

– I, II,

III

Low High Low

Token

Based

Type

– I, II

Medium Low High

Text

Based

Type

- I

High High Low

Metric

Based

Type

– I, II,

III

Depends

on Metrics

used

High Medium

PDG

Based

Type

– I, II,

III

Low High Medium

Table 2 provides information on various approaches' efficacy, portability, and integrality depending

on categories of discovered clones.

5. PROBABILISTIC SOFTWARE MODELING (PSM)

The software process is complicated with all interconnected components of requirements,

features, revisions, modules, or software 2.0. In conventional software engineers, complexity-related

concerns have numerous tools, techniques, and solutions to relieve problems (e.g., version control

systems, requirements engineering, unit testing). Methods and instruments that incorporate

analytics, testing, growth, integration, and maintenance may be adopted in future if artificial

intelligence is tightly integrated into programme plans. These strategies have not yet been

developed. [23].

Current PSM, modeling data-driven approach to software engineering predictive & generative

approaches. PSM is an analytical process that constructs a program's probabilistic model to

conventional software (e.g. Java). The PM enables developers to define programme semantics at the

same level of abstraction as their source code (i.e. approaches, regions, or modules) without having

to switch between project implementations or programming languages. It allows the benefits that

are key in other areas of combinatorial optimization & complex formulas for software development

(e.g.material simulation, medical biology, meteorology, economics,). In both traditional software

and AI components with their unpredictability, PSM allows uses e.g. test case creation, semantic

clone identification, or abnormal detection without delay. Our investigations show that PMs can

model programs on which these applications build and enable causal reasoning & constant data

creation. PSM has 4 major elements: Code, Runtime, Modeling & Inference. PSM contains four primary

features. First, a programme structure (Code) is extracted with the assistance of static code analysis

by PSM. Attributes, executable code, and types (for example, fields, methods, or classes in Java)

make up various layers of abstraction. Secondly, it analyzes the behavior of the application by

monitoring its runtime (Runtime). This provides access to properties & executable calls. This is

defined as a structure & dynamic behavior that are then combined with PSM into a probabilistic model

(Modeling). The primary contribution of this study is this phase as well. After that, anomaly detectors

and test-case generators are used to calibrate the models by statistical inference .

Lampyrid 2023: Volume 13, 61–72

ISSN: 2041-4900

https://lampyridjournal.com

69

A. PSM Applications

PSM is a general basis for a broad range of generative & predictive purposes. This section provides

an assortment of available applications.

a) Predictive Applications

The aim is the measurement, visualization, inference, and prediction of a system's behavior &

performance.

• Visualization and Comprehension applications Contribute to the understanding and behavior

of the software. This involves viewing code components & non-functional characteristics, e.g.

efficiency. PMs are visualization source that shows global but contextual behavior across the

parts of code.

• Semantic Clone-Detection applications Intercept distinct, but conceptually identical sections

of code, e.g. iterative as well as recursive algorithm version. Clone detection usually analyses

pieces of source code focused on clones accurately or significantly adjusted. Semantic

equivalence, though, does not have entirely static source code characteristics. By analyzing

their models, PSM may discover technique-level clones. For example, the comparison was made

by statistical analyses on statistical features, or by use of approaches like Q-Q visualization

(complete manual decision), or combinations of sampled data.

• Anomaly Detection applications Measure the difference between such a persistent PSM model

as well as an observable recently obtained. These technologies can be implemented in a live

system that monitors and checks factors for their models. An improbable runtime monitoring

threshold x (e.g., p(W eight = weightnew) <.1) is used to prompt extra measures due to a

failure. x, as well as its implications on further aspects, may subsequently be explored for

further decision-making through, for example, visualization and understanding approach.

b) Generative Applications

This is a useful insight from the frameworks, for example, operable inputs or property values.

• Test-Case Generation applications to produce test data, obtain observations via operational &

property models. PSM may produce scanned test data for a given system situation with a certain

probability or (system state). E.g., probability-scoped data may be utilized in the generation

of various test cases, such as typical, rare, or invisible, by sampling x < P(Person) = P (Weight,

Height) < y with pre-defined probability borders x and y. This improves overall process models

with relevant, autonomously created, behavior-based tests.

• Simulation applications Example traces of operation designed to replicate the operating system

from the network of models. It will probably be running without executing the original

application. Simulators can link hardware-software interfaces & reduce the number of

hardware dependencies in creation [23].

6. RELATED WORK

A study has been conducted to examine the various methods currently in employed for clone

detection in source code segments. It helps in identifying a variety of additional difficulties with

clone detection in source code. This section provides a review of clone detection studies and

associated fields.

Svajlenko & Roy (2021) introduced a benchmarking framework for mutation analysis that may be

used not only to assess recalls of clone identification systems for various kinds of clones but also to

evaluate particular types of clone modifications without manual effort. The system employs a clone

synthesis editing taxonomy to create 1000 fake clones, injecting codes into bases & evaluating

subject clones automatically using a method for mutation analysis. Furthermore, the framework

Lampyrid 2023: Volume 13, 61–72

ISSN: 2041-4900

https://lampyridjournal.com

70

provides functionality in which individual clone pairs may also be utilized for the evaluation of an

instrument's subject. This presents a chance to assess a tool's capability to find sophisticated type-4

clones or real-world clones without creating specialised mutation processes for certain situations.

[24].

Thaller, Linsbauer, & Egyed (2020) The current semantic clone identification using the PSM

system as a robust technique for the semi-semantically equivalent detection of the methodologies.

PSM inspects the program structure and functionality and synthesizes the PMs network. Every PM in

the recognized software method allows run-time events to be generated & evaluated. They use this

to discover semantic clones properly. Findings indicate that the technique can recognize semantic

clones with high efficiency & low error rates in conditions of syntactical similarity [25].

Yu et al. (2019) suggested a framework technique to detect semantic clones by using tree-based

convolution, by both collecting structural code information from the AST as well as the code

information lexical tokens for a code fragment. Furthermore, their method overcomes the restriction

of the limitless vocabulary of tokens as well as models in the use of sources of lexical data from

tokens frequently useless when it comes to unseen tokens. Specifically, they present a novel approach

of embedding, known as position-aware character embedding (PACE), that mainly considers every

token as a positional combo of single-hot character embedding. Their testing findings show that their

method significantly improves previous state-of-the-art approaches by increasing F1 score from 0.42

to 0.15 in two prominent code-clone benchmarks (OJClone & BigCloneBench). PACE also shows that

their technique is significantly more efficient when code clones have invisible tokens [26].

Sheneamer (2019) Suggests a detection tool for Java code obfuscation as well as for syntactic &

semantic clones via integrating cluster data using CNN deep learning algorithm known as CCDLC. The

CCDLC employs a new Java BDG along with PDG as well as the AST functionalities. To validate the

efficacy of their approach, they employ numerous published code clones and Java obscured code

datasets. Their testing findings and assessment show that the combination of classification as well as

deep learning is a feasible approach because it improves clones detection and obfuscation code of

corpus. The major advantage of this technique is that their tool may increase the accuracy of

detection of shielding by 5.44% and enhance the accuracy of both clones of syntactic and semantic

by approximately 12% [27].

Y. Yang et al. (2018) Concentration on an investigation and use of structural information to

evaluate coding similitudes on function-level coding clones-based function. In order to create more

abstract code descriptions, it first integrates a kind of (AST-Abstract Syntax Tree) that uses specified

node types rather than a true node description. The method then computes the contrast scores

between two pairs of code fragments at function level using Smith-Waterman local assessment

technique. Trials carried out across 5 open-source datasets demonstrate that their approach can

obtain 92.46 percent on average accuracy & up to 10.94 percent & 4.02 percent respectively above

competitive methods. Meanwhile, testing findings reveal that in code clone identification their

technique can reach an average of 90.73% of precision over cross-projects [28].

Misu & Sakib (2018) If they have comparable interfaces & execute comparable tasks, 2 techniques

are prone to cloning. In this light, a new methodology is being presented to identify clones utilizing

method interface similarities, which is a lightweight interface-driven code clone detection (IDCCD).

First, the blocks of a technique from source files are tokenized. Interface information is collected &

indexed using mapped tokens for these method block tokens. Identical interfaces from this index are

then queried and the clone detection algorithm is similar to a similarity function. Using a BigCloneEval

platform, IDCCD is evaluated alongside other cutting-edge methods. The testing findings show which

IDCCD is identical in its efficiency to other less sophisticated current instruments [29].

Hu et al., (2017) attempt to implement a semantics-based solution to achieve the objective. This

approach evaluates the binary functions in arguments as well as indirect jump targets, then emulates

Lampyrid 2023: Volume 13, 61–72

ISSN: 2041-4900

https://lampyridjournal.com

71

their operation to obtain the semantic signatures that let us assess the similarity of such processes.

The method has been put into action in a working model known as CACompare, which can identify

duplicated functions across several architectures & compilation configurations. It can do binary

analysis on Linux platforms, supporting comparisons between popular architectures (i.e. IA-32, ARM,

& MIPS). The testing findings demonstrate that CA is capable of solving a wide range of issues

associated with binary incompatibilities on diverse architecture including configuration-variant

compilation configurations, Also, it is effective in binary code clone identification; nevertheless,

compared to state-of-the-art methods, it yields high precision [30].

Sunayna et al., (2016) A number of studies have shown that between 5 and 20 percent of software

systems include duplicate code as a result of copying in pieces of previously written code and that

this wastes between 40 and 60 percent of an organization's work. Code duplication has the major

drawback of necessitating the investigation of all related code pieces for the same issue if a flaw is

found in one code fragment. Code clones may be spotted by using various clone detection methods,

that improve software maintenance effectiveness & lowers the overall maintenance cost [31].

7. CONCLUSIONS AND FUTURE WORK

This paper examined software cloning and code clone detection, discussing advantages

& disadvantages of software cloning as well as the various categories of code clones that can be found

in software systems. Methods for detecting code clones, including textual analysis, and tree-based

analysis, among others. were also investigated. The potential method of probabilistic software

modeling was also described; this method has been proved to be useful in detecting clones. Clone

detection by graph analysis is only one of the numerous benefits of modeling code as a probabilistic

graph, which has been proved to have widespread use in software engineering. We conclude that

probabilistic software modeling is a feasible approach that may augment existing code clone

detection methods, and that software cloning and recognition of code clones is a significant field of

research. We believe that this review article serves as a helpful resource for scholars and

practitioners in the area of software engineering since the detection and management of code clones

will become more crucial as the complexity of software systems continues to expand.

Future research in this area might be focused in a number of different directions. To begin,

studies may be undertaken to discover and create better methods for detecting code clones, such as

hybrid approaches that integrate different methods in order to enhance clone detection accuracy.

Second, there is a need for more research into the uses of probabilistic software modeling in software

engineering, especially in the field of code synthesis, where probabilistic models may be used to

automatically produce code from specifications. Finally, more study is required to learn how software

quality is affected by code cloning and to create methods for effectively managing code clones to

boost software maintainability.

REFERENCES

[1] H. Min and Z. L. Ping, “Survey on software clone detection research,” 2019, doi:

10.1145/3312662.3312707.

[2] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A systematic review,” Information and

Software Technology. 2013, doi: 10.1016/j.infsof.2013.01.008.

[3] S. Jadon, “Code clones detection using machine learning technique: Support vector machine,” 2017, doi:

10.1109/CCAA.2016.7813733.

[4] A. Sheneamer, S. Roy, and J. Kalita, “An Effective Semantic Code Clone Detection Framework using

Pairwise Feature Fusion,” IEEE Access, 2021, doi: 10.1109/ACCESS.2021.3079156.

[5] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A Novel Neural Source Code Representation

Based on Abstract Syntax Tree,” 2019, doi: 10.1109/ICSE.2019.00086.

[6] Y. Yuan, W. Kong, G. Hou, Y. Hu, M. Watanabe, and A. Fukuda, “From Local to Global Semantic Clone

Detection,” 2020, doi: 10.1109/DSA.2019.00012.

[7] W. Hua, Y. Sui, Y. Wan, G. Liu, and G. Xu, “FCCA: Hybrid Code Representation for Functional Clone

Lampyrid 2023: Volume 13, 61–72

ISSN: 2041-4900

https://lampyridjournal.com

72

Detection Using Attention Networks,” IEEE Trans. Reliab., 2021, doi: 10.1109/TR.2020.3001918.

[8] J. Zeng, K. Ben, X. Li, and X. Zhang, “Fast code clone detection based on weighted recursive

autoencoders,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2938825.

[9] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting Code Clones with Graph Neural Network and Flow-

Augmented Abstract Syntax Tree,” 2020, doi: 10.1109/SANER48275.2020.9054857.

[10] Y. Meng and L. Liu, “A Deep Learning Approach for a Source Code Detection Model Using Self-Attention,”

Complexity, 2020, doi: 10.1155/2020/5027198.

[11] M. Lei, H. Li, J. Li, N. Aundhkar, and D. K. Kim, “Deep learning application on code clone detection: A

review of current knowledge,” J. Syst. Softw., 2022, doi: 10.1016/j.jss.2021.111141.

[12] K. W. Nafi, T. S. Kar, B. Roy, C. K. Roy, and K. A. Schneider, “CLCDSA: Cross language code clone

detection using syntactical features and API documentation,” 2019, doi: 10.1109/ASE.2019.00099.

[13] D. Perez and S. Chiba, “Cross-language clone detection by learning over abstract syntax trees,” 2019,

doi: 10.1109/MSR.2019.00078.

[14] M. A. Alamri et al., “Molecular and Structural Analysis of Specific Mutations from Saudi Isolates of SARS-

CoV-2 RNA-Dependent RNA Polymerase and their Implications on Protein Structure and Drug–Protein

Binding,” Molecules, 2022, doi: 10.3390/molecules27196475.

[15] F. Al-omari, “Towards Semantic Clone Detection, Benchmarking, and Evaluation,” 2021.

[16] R. Asghar et al., “Wind Energy Potential in Pakistan: A Feasibility Study in Sindh Province,” Energies,

2022, doi: 10.3390/en15228333.

[17] H. Zhang and K. Sakurai, “A Survey of Software Clone Detection from Security Perspective,” IEEE Access.

2021, doi: 10.1109/ACCESS.2021.3065872.

[18] J. Svajlenko and C. Roy, “A Survey on the Evaluation of Clone Detection Performance and Benchmarking.”

2020.

[19] S. U. Ahmed, M. Affan, M. I. Raza, and M. Harris Hashmi, “Inspecting Mega Solar Plants through Computer

Vision and Drone Technologies,” 2022, doi: 10.1109/FIT57066.2022.00014.

[20] V. Rohilla, M. Kaur, and S. Chakraborty, “An Empirical Framework for Recommendation-based Location

Services Using Deep Learning,” Eng. Technol. Appl. Sci. Res., 2022, doi: 10.48084/etasr.5126.

[21] D. M. StefanWagner, “Chapter 3 - Analyzing Text in Software Projects,” Art Sci. Anal. Softw. Data, pp.

39–72, 2015.

[22] M. Salman Khan, “A Topic Modeling approach for Code Clone Detection,” UNIVERSITY OF NORTH FLORIDA

SCHOOL OF COMPUTING, 2019.

[23] H. Thaller, L. Linsbauer, R. Ramler, and A. Egyed, “Probabilistic Software Modeling: A Data-driven

Paradigm for Software Analysis.” 2019.

[24] J. Svajlenko and C. K. Roy, “The Mutation and Injection Framework: Evaluating Clone Detection Tools

with Mutation Analysis,” IEEE Trans. Softw. Eng., 2021, doi: 10.1109/TSE.2019.2912962.

[25] H. Thaller, L. Linsbauer, and A. Egyed, “Towards Semantic Clone Detection via Probabilistic Software

Modeling,” 2020, doi: 10.1109/IWSC50091.2020.9047635.

[26] H. Yu, W. Lam, L. Chen, G. Li, T. Xie, and Q. Wang, “Neural detection of semantic code clones via tree-

based convolution,” 2019, doi: 10.1109/ICPC.2019.00021.

[27] A. Sheneamer, “CCDLC Detection Framework-Combining Clustering with Deep Learning Classification for

Semantic Clones,” 2019, doi: 10.1109/ICMLA.2018.00111.

[28] Y. Yang, Z. Ren, X. Chen, and H. Jiang, “Structural Function Based Code Clone Detection Using a New

Hybrid Technique,” 2018, doi: 10.1109/COMPSAC.2018.00045.

[29] M. R. H. Misu and K. Sakib, “Interface Driven Code Clone Detection,” 2018, doi: 10.1109/APSEC.2017.97.

[30] Y. Hu, Y. Zhang, J. Li, and D. Gu, “Binary Code Clone Detection across Architectures and Compiling

Configurations,” 2017, doi: 10.1109/ICPC.2017.22.

[31] S. Sunayna, K. Solanki, S. Dalal, and S. Sudhir, “Comprehensive Study of Software Clone Detection

Techniques,” IOSR J. Comput. Eng., 2016, doi: 10.9790/0661-1804021519.

